In both the FAO soil classification and the USA soil taxonomy, a histosol is a soil comprised primarily of organic materials. They are defined as having 40 centimetres (16 in) or more of organic soil material in the upper 80 centimetres (31 in). Organic soil material has an organic carbon content (by weight) of 12 to 18 percent, or more, depending on the clay content of the soil. These materials include muck (sapric soil material), mucky peat (hemic soil material), or peat (fibric soil material). Aquic conditions or artificial drainage are required.[1] Typically, histosols have very low bulk density and are poorly drained because the organic matter holds water very well. Most are acidic and many are very deficient in major plant nutrients which are washed away in the consistently moist soil.
Histosols are known by various other names in other countries, such as peat or muck. In Australia, histosols are called organosols.
Histosols form whenever organic matter forms at a more rapid rate than it is destroyed. This occurs because of restricted drainage precluding aerobic decomposition, and the remains of plants and animals remain within the soil. Thus, histosols are very important ecologically because they, and gelisols, store large quantities of organic carbon. If accumulation continues for a long enough period, coal forms.
Most histosols occur in Canada, Scandinavia, the West Siberian Plain, Sumatra, Borneo and New Guinea. Smaller areas are found in other parts of Europe, the Russian Far East (chiefly in Khabarovsk Krai and Amur Oblast), Florida and other areas of permanent swampland. Fossil histosols are known from the earliest extensive land vegetation in the Devonian.
Histosols are generally very difficult to cultivate because of the poor drainage and often low chemical fertility. However, histosols formed on very recent glacial lands can often be very productive when drained and produce high-grade pasture for dairying or beef cattle. They can sometimes be used for fruit if carefully managed, but there is a great risk of the organic matter becoming dry powder and eroding under the influence of drying winds. A tendency towards shrinkage and compaction is also evident with crops.
Like gelisols, histosols have greatly restricted use for civil engineering purposes because heavy structures tend to subside in the wet soil.
In USA soil taxonomy, histosols are subdivided into:
- Folists - histosols that are not saturated with water for long periods of time during the year.
- Fibrists - histosols that are primarily made up of only slightly decomposed organic materials, often called peat.
- Hemists - histosols that are primarily made up of moderately decomposed organic materials.
- Saprists - histosols that are primarily made up of highly decomposed organic materials, often called muck.
Torrerts: They have cracks that are closed for less than 60 consecutive days when the soil temperature at 50 cm is above 8°C. These soils are not extensive in the U.S., and occur mostly in west Texas, New Mexico, Arizona, and South Dakota, but are the most extensive suborder of Vertisols in Australia.
Usterts: They have cracks that are open for at least 90 cumulative days per year. Globally, this suborder is the most extensive of the Vertisols order, encompassing the Vertisols of the tropics and monsoonal climates in Australia, India, and Africa. In the U.S. the Usterts are common in Texas, Montana, Hawaii, and California.
Uderts: They have cracks that are open less than 90 cumulative days per year and less than 60 consecutive days during the summer. In some areas, cracks open only in drought years. Uderts are of small extent globally, being most abundant in Uruguay and eastern Argentina, but also found in parts of Queensland and the "Black Belt" of Mississippi and Alabama.
No comments:
Post a Comment