Sunday, 9 October 2016

Pengertian Umum Mesin Bensin

Pengertian Umum Mesin Bensin 
Motor bakar adalah jenis mesin kalor yang termasuk Mesin Pembakaran Dalam (Internal Combustion Engine). Internal Combustion Engine (I.C. Engine) adalah mesin kalor yang mengubah energi kimia bahan bakar menjadi kerja mekanis, yaitu dalam bentuk putaran poros. Energi kimia bahan bakar pertama diubah menjadi energi panas melalui proses pembakaran atau oksidasi dengan udara dalam mesin. Energi panas ini meningkatkan temperatur dan tekanan gas pada ruang bakar. Gas bertekanan tinggi ini kemudian berekspansi melawan mekanisme mekanik mesin. 

Ekspansi ini diubah oleh mekanisme link menjadi putaran crankshaft, yang merupakan output dari mesin tersebut. Crankshaft selanjutnya dihubungkan ke sistem transmisi oleh sebuah poros untuk mentransmisikan daya atau energi putaran mekanis yang selanjutnya energi ini dimanfaatkan sesuai dengan keperluan.

Siklus Otto pada mesin bensin disebut juga dengan siklus volume konstan, dimana pembakaran terjadi pada saat volume konstan. Pada mesin bensin dengan siklus Otto dikenal dua jenis mesin, yaitu mesin 4 langkah (four stroke) dan 2 langkah (two stroke). Untuk mesin 4 langkah terdapat 4 kali gerakan piston atau 2 kali putaran poros engkol (crank shaft) untuk tiap siklus pembakaran, sedangkan untuk mesin 2 langkah terdapat 2 kali gerakan piston atau 1 kali putaran poros engkol untuk tiap siklus pembakaran. Sementara yang dimaksud langkah adalah gerakan piston dari TMA (Titik Mati Atas) atau TDC (Top Death Center) sampai TMB (Titik Mati Bawah) atau BDC (Bottom Death Center) maupun sebaliknya dari TMB ke TMA.

Prinsip Kerja Mesin Empat Langkah
Mesin empat langkah mempunyai empat gerakan piston yaitu : 
  1. Langkah hisap (suction stroke) Pada langkah ini bahan bakar yang telah bercampur dengan udara dihisap oleh mesin. Pada langkah ini katup hisap (intake valve) membuka sedang katup buang (exhaust valve) tertutup, sedangkan piston bergerak menuju TMB sehingga tekanan dalam silinder lebih rendah dari tekanan atmosfir. Dengan demikian maka campuran udara dan bahan bakar akan terhisap ke dalam silinder.
  2. Langkah Kompresi (compression stroke) Pada langkah ini kedua katup baik intake maupun exhaust tertutup dan piston bergerak dari TMB ke TMA. Karena itulah maka campuran udara dan bahan bakar akan terkompresi, sehingga tekanan dan suhunya akan meningkat. Beberapa saat sebelum piston mencapai TMA terjadi proses penyalaan campuran udara dan bahan bakar yang telah terkompresi oleh busi (spark plug). Pada proses pembakaran ini terjadi perubahan energi dari energi kimia menjadi energi panas dan gerak. 
  3. Langkah Ekspansi (expansion stroke) Karena terjadi perubahan energi dari energi kimia menjadi energi gerak dan panas menimbulkan langkah ekspansi yang menyebabkan piston bergerak dari TMA ke TMB. Gerakan piston ini akan mengakibatkan berputarnya poros engkol sehingga menghasilkan tenaga. Pada saat langkah ini kedua katup dalam kondisi tertutup. 
  4. Langkah Buang (exhaust stroke) Pada langkah ini piston bergerak dari TMB ke TMA, sedangkan katup buang terbuka dan katup isap tertutup, sehingga gas sisa pembakaran akan terdorong keluar melalui saluran buang (exhaust manifold) menuju udara luar. Seperti terlihat pada Gambar 2.1.

Gambar 2.1. Siklus motor bakar pada mesin 4 langkah 

2. Siklus Ideal 
Proses termodinamika dan kimia yang terjadi dalam motor bakar torak sangat kompleks untuk dianalisa menurut teori. Untuk memudahkan menganalisanya perlu membayangkan suatu keadaan yang ideal. Makin ideal suatu keadaan makin mudah untuk dianalisa, akan tetapi dengan sendirinya semakin jauh menyimpang dari keadaan sebenarnya. Pada umumnya untuk menganalisa motor bakar torak dipergunakan siklus udara sebagai siklus yang ideal. Siklus udara menggunakan beberapa keadaan yang sama dengan siklus sebenarnya dalam hal sebagai berikut : 
  1. Urutan proses 
  2. Perbandingan kompresi 
  3. Pemilihan temperatur dan tekanan pada suatu keadaan 
  4. Penambahan kalor yang sama per satuan berat udara 
Di dalam analisis udara, khususnya motor bakar torak akan dibahas: 
  1. Siklus udara volume konstan (siklus otto) 
  2. Siklus udara tekanan konstan (siklus diesel) 
  3. Siklus udara tekanan terbatas (siklus gabungan)
Siklus Aktual Motor Bensin 
Siklus udara volume konstan atau siklus otto adalah proses yang ideal. Dalam kenyataannya baik siklus volume konstan, siklus tekanan konstan dan siklus gabungan tidak mungkin dilaksanakan, karena adanya beberapa hal sebagai berikut: 
  1. Fluida kerja bukanlah udara yang bisa dianggap sebagai gas ideal, karena fluida kerja di sini adalah campuran bahan bakar (premium) dan udara, sehingga tentu saja sifatnya pun berbeda dengan sifat gas ideal. 
  2. Kebocoran fluida kerja pada katup (valve), baik katup masuk maupun katup buang, juga kebocoran pada piston dan dinding silinder, yang menyebabkan tidak optimalnya proses. 
  3. Baik katup masuk maupun katup buang tidak dibuka dan ditutup tepat pada saat piston berada pada posisi TMA dan atau TMB, karena pertimbangan dinamika mekanisme katup dan kelembaman fluida kerja. Kerugian ini dapat diperkecil bila saat pembukaan dan penutupan katup disesuaikan dengan besarnya beban dan kecepatan torak. 
  4. Pada motor bakar torak yang sebenarnya, saat torak berada di TMA tidak terdapat proses pemasukan kalor seperti pada siklus udara. Kenaikan tekanan dan temperatur fluida kerja disebabkan oleh proses pembakaran campuran udara dan bahan bakar dalam silinder. 
  5. Proses pembakaran memerlukan waktu untuk perambatan nyala apinya, akibatnya proses pembakaran berlangsung pada kondisi volume ruang yang berubah-ubah sesuai gerakan piston. Dengan demikian proses pembakaran harus dimulai beberapa derajat sudut engkol sebelum torak mencapai TMA dan berakhir beberapa derajat sudut engkol sesudah TMA menuju TMB. Jadi proses pembakaran tidak dapat berlangsung pada volume atau tekanan yang konstan. 
  6. Terdapat kerugian akibat perpindahan kalor dari fluida kerja ke fluida pendingin, misalnya oli, terutama saat proses kompresi, ekspansi dan waktu gas buang meninggalkan silinder. Perpindahan kalor tersebut terjadi karena ada perbedaan temperatur antara fluida kerja dan fluida pendingin. 
  7. Adanya kerugian energi akibat adanya gesekan antara fluida kerja dengan dinding silinder dan mesin. 
  8. Terdapat kerugian energi kalor yang dibawa oleh gas buang dari dalam silinder ke atmosfer sekitarnya.
SUMBER;

No comments:

Post a Comment